Tristetraprolin induces cell cycle arrest in breast tumor cells through targeting AP-1/c-Jun and NF-κB pathway

نویسندگان

  • Li Xu
  • Huan Ning
  • Ling Gu
  • Qinghong Wang
  • Wenbao Lu
  • Hui Peng
  • Weiguang Cui
  • Baoling Ying
  • Christina R. Ross
  • Gerald M. Wilson
  • Lin Wei
  • William S.M. Wold
  • Jianguo Liu
چکیده

The main characteristic of cancers, including breast cancer, is the ability of cancer cells to proliferate uncontrollably. However, the underlying mechanisms of cancer cell proliferation, especially those regulated by the RNA binding protein tristetraprolin (TTP), are not completely understood. In this study, we found that TTP inhibits cell proliferation in vitro and suppresses tumor growth in vivo through inducing cell cycle arrest at the S phase. Our studies demonstrate that TTP inhibits c-Jun expression through the C-terminal Zn finger and therefore increases Wee1 expression, a regulatory molecule which controls cell cycle transition from the S to the G2 phase. In contrast to the well-known function of TTP in regulating mRNA stability, TTP inhibits c-Jun expression at the level of transcription by selectively blocking NF-κB p65 nuclear translocation. Reconstitution of NF-κB p65 completely abolishes the inhibition of c-Jun transcription by TTP. Moreover, reconstitution of c-Jun in TTP-expressing breast tumor cells diminishes Wee1 overexpression and promotes cell proliferation. Our results indicate that TTP suppresses c-Jun expression that results in Wee1 induction which causes cell cycle arrest at the S phase and inhibition of cell proliferation. Our study provides a new pathway for TTP function as a tumor suppressor which could be targeted in tumor treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Resveratrol suppresses hyperglycemia-induced activation of NF-κB and AP-1 via c-Jun and RelA gene regulation

Background: Resveratrol (RSV) provides several important biological functions in wide variety of cells. In this study, we investigated the molecular mechanisms underlying anti-inflammatory effect of RSV on HepG2 cells by assessing the gene expression of RelA and c-Jun- subunits of NF-κB and AP-1 transcription factors.    Methods: HepG2 cells were settled in a serum- free medium...

متن کامل

Cyclopamine is a novel Hedgehog signaling inhibitor with significant anti-proliferative, anti-invasive and anti-estrogenic potency in human breast cancer cells

Stimulation of Hedgehog (Hh) signaling induces carcinogenesis or promotes cell survival in cancers of multiple organs. In epithelial cancer with aberrant Hedgehog activation, abrogation of Hedgehog signaling by cyclopamine, a naturally occurring Hedgehog-specific small-molecule inhibitor, causes profound inhibition of tumor growth. In the present study, cyclopamine displayed a significant poten...

متن کامل

KHF16 is a Leading Structure from Cimicifuga foetida that Suppresses Breast Cancer Partially by Inhibiting the NF-κB Signaling Pathway

Triterpenoids extracted from Cimicifuga foetida have been reported to inhibit cancer by inducing cell cycle arrest and apoptosis. In this study, KHF16 (24-acetylisodahurinol-3-O-β-D-xylopyranoside), a cycloartane triterpenoid isolated from the rhizomes of C. foetida, showed potent anti-cancer activity in multiple ERα/PR/HER2 triple-negative breast cancer (TNBC) cell lines. KHF16 significantly i...

متن کامل

Anti-proliferative effect and apoptotic induction of sesquiterpene lactone parthenolide in a human breast cancer cell line

Parthenolide is a secondary metabolite, which naturally occurs in the feverfew plant and is responsible for its healing power. The potential of parthenolide in inhibition of cancer cell growth, alone or in combination with other anti-cancer therapeutics, have been studied in several laboratories. In this study, the effect of extracted parthenolide on the expression of seven pro-apoptotic genes,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015